Efficient Algorithm for the Paired-Domination Problem in Convex Bipartite Graphs

نویسندگان

  • Ruo-Wei Hung
  • Chun-Kai Wang
چکیده

Let G = (V, E) be a graph without isolated vertices. A matching in G is a set of independent edges in G. A perfect matching M in G is a matching such that every vertex of G is incident to an edge of M . A set S ⊆ V is a paired-dominating set of G if every vertex not in S is adjacent to a vertex in S, and if the subgraph induced by S contains a perfect matching. The paired-domination problem is to find a paired-dominating set of G with minimum cardinality. The paired-domination problem on bipartite graphs has been shown to be NP-complete. A bipartite graph G = (U, W, E) is convex if there exists an ordering of the vertices of W such that, for each u ∈ U , the neighbors of u are consecutive in W . In this paper, we present an O(|U | log |U |)-time algorithm to solve the paired-domination problem in convex bi-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coverings, matchings and paired domination in fuzzy graphs using strong arcs

The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

Joanna Raczek NP - COMPLETENESS OF WEAKLY CONVEX AND CONVEX DOMINATING SET DECISION PROBLEMS

The convex domination number and the weakly convex domination number are new domination parameters. In this paper we show that the decision problems of convex and weakly convex dominating sets are NP -complete for bipartite and split graphs. Using a modified version of Warshall algorithm we can verify in polynomial time whether a given subset of vertices of a graph is convex or weakly convex.

متن کامل

Fe b 20 08 Labelling Algorithms for Paired - domination Problems in Block and Interval Graphs ∗

Let G = (V,E) be a graph without isolated vertices. A set S ⊆ V is a paired-domination set if every vertex in V − S is adjacent to a vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination problem is to determine the paired-domination number, which is the minimum cardinality of a paired-dominating set. Motivated by a mistaken algorithm given by Chen, Kang an...

متن کامل

Solving the Weighted Efficient Edge Domination Problem on Bipartite Permutation Graphs

Given a simple graph G = (V, E), an edge (u, u) E E is said to dominate itself and any edge (u,x) or (u,x), where x E V. A subset D C E is called an efficient edge dominating set of G if all edges in E are dominated by exactly one edge of D. The efficient edge domination problem is to find an efficient edge dominating set of minimum size in G. Suppose that each edge e E E is associated with a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010